[1] 刘中林, 彭澜, 王晖, 等. 种植体周围细菌感染患者病原菌分布及耐药性分析[J]. 中华医院感染学杂志, 2017, 27(2):399-401,413. [2] Feuerstein O.Light therapy:complementary antibacterial treatment of oral biofilm[J]. Adv Dent Res. 2012; 24(2):103-107. [3] Luk K, Zhao I S, Yu O Y, et al.Effects of 10,600 nm Carbon Dioxide Laser on Remineralizing Caries:A Literature Review[J]. Photobiomodul Photomed Laser Surg. 2020; 38(2):59-65. [4] Walia V, Goswami M, Mishra S, et al.Comparative Evaluation of the Efficacy of Chlorhexidine,Sodium Hypochlorite, the Diode Laser and Saline in Reducing the Microbial Count in Primary Teeth Root Canals-An In Vivo Study[J]. J Lasers Med Sci. 2019; 10(4):268. [5] Xu J W, Yao K, Xu Z K.Nanomaterials with a photothermal effect for antibacterial activities:an overview[J]. Nanoscale. 2019; 11(18):8680-8691. [6] Yu Y, Mei L, Shi Y, et al.Ag-conjugated graphene quantum dots with blue light-enhanced singlet oxygen generation for ternary-mode high-efficient antimicrobial therapy[J]. J Mater Chem B. 2020; 8:1371-1382. [7] Dos Santos K F, Sousa M S, Valverde J V P, et al. Fractal analysis and mathematical models for the investigation of photothermal inactivation of Candida albicans using carbon nanotubes[J]. Colloids Surf B Biointerfaces. 2019; 180:393-400. [8] Yang T, Wang D, Liu X.Assembled gold nanorods for the photothermal killing of bacteria[J]. Colloids Surf B Biointerfaces. 2019; 173:833-841. [9] 马丽娜, 米宏霏, 薛云新, 等. ROS在细菌耐药及抗生素杀菌中的作用机制[J]. 遗传, 2016, 38(10):902-909. [10] Dharmaraja A T.Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria[J]. J Med Chem. 2017; 60(8):3221-3240. [11] Kharkwal G B, Sharma S K, Huang Y Y, et al.Photodynamic therapy for infections:clinical applications[J]. Lasers Surg Med. 2011; 43(7):755-767. [12] Sun J, Fan Y, Zhang P, et al.Self-enriched mesoporous silica nanoparticle composite membrane with remarkable photodynamic antimicrobial performances[J]. J Colloid Interface Sci. 2020; 559:197-205. [13] 许小辉. 光动力学疗法对口腔致龋菌的体外抗菌作用及对人工菌斑生物膜形成的影响[D]. 重庆医科大学, 2011:15-23. [14] Durkee H, Arboleda A, Aguilar M C, et al.Rose bengal photodynamic antimicrobial therapy to inhibit Pseudomonas aeruginosa keratitis isolates[J]. Lasers Med Sci. 2020; 35(4):861-866. [15] Mirzahosseinipour M, Khorsandi K, Hosseinzadeh R, et al.Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles[J]. Photodiagnosis Photodyn Ther. 2019; 29:101639. [16] Maisch T, Eichner A, Späth A, et al.Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives[J]. PloS one. 2014; 9(12):e111792. [17] Vinagreiro C S, Zangirolami A, Schaberle F A, et al.Antibacterial Photodynamic Inactivation of Antibiotic-Resistant Bacteria and Biofilms with Nanomolar Photosensitizer Concentrations[J]. ACS Infect Dis. 2020; 6(6):1517-1526. [18] Wang Y, Wang Y, Wang Y, et al.Antimicrobial blue light inactivation of pathogenic microbes:State of the art[J]. Drug Resist Updat. 2017; 33:1-22. [19] Dai T, Gupta A, Murray C K, et al.Blue light for infectious diseases:Propionibacterium acnes,Helicobacter pylori, and beyond[J]? Drug Resist Updat. 2012; 15(4):223-236. [20] Kleinpenning M M, Smits T, Frunt M H A, et al. Clinical and histological effects of blue light on normal skin[J]. Photodermatol Photoimmunol Photomed. 2010; 26(1):16-21. [21] 杨海兵, 戈俊. 不同消毒方法对血液中细菌杀灭效果的研究[J]. 中国消毒学杂志, 2013 (7):628-629. [22] Hong L, Liu X, Tan L, et al.Rapid Biofilm Elimination on Bone Implants Using Near-InfraredActivated Inorganic Semiconductor Heterostructures[J]. Adv Healthc Mater. 2019; 8(19):1900835. [23] Zhu M, Liu X, Tan L, et al.Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing[J]. J Hazard Mater. 2020; 383:121122. [24] Feng Z, Liu X, Tan L, et al.Electrophoretic Deposited Stable Chitosan@MoS2 Coating with Rapid In Situ Bacteria-Killing Ability under Dual-Light Irradiation[J]. Small. 2018; 14(21):e1704347. [25] Radunović M, Petrini M, Vlajic T, et al.Effects of a novel gel containing 5-aminolevulinic acid and red LED against bacteria involved in peri-implantitis and other oral infections[J]. J Photochem Photobiol B. 2020; 205:111826. [26] Saffarpour A, Nozari A, Fekrazad R, et al.Microstructural Evaluation of Contaminated Implant Surface Treated by Laser, Photodynamic Therapy, and Chlorhexidine 2 percent[J]. Int J Oral Maxillofac Implants. 2018; 33(5):1019-1026. [27] Azizi B, Budimir A, Bago I, et al.Antimicrobial efficacy of photodynamic therapy and light-activated disinfection on contaminated zirconia implants:An in vitro study[J]. Photodiagnosis Photodyn Ther. 2018; 21:328-333. [28] Ohba S, Sato M, Noda S, et al.Assessment of safety and efficacy of antimicrobial photodynamic therapy for peri-implant disease[J]. Photodiagnosis Photodyn Ther. 2020; 31:101936. [29] Zhao Y, Pu R, Qian Y, et al.Antimicrobial photodynamic therapy versus antibiotics as an adjunct in the treatment of periodontitis and peri-implantitis:A systematic review and meta-analysis[J]. Photodiagnosis Photodyn Ther. 2021; 34:102231. [30] Ahmed P, Bukhari I A, Albaijan R, et al.The effectiveness of photodynamic and antibiotic gel therapy as an adjunct to mechanical debridement in the treatment of peri-implantitis among diabetic patients[J]. Photodiagnosis Photodyn Ther. 2020; 32:102077. [31] Chambrone L, Wang H L, Romanos G E.Antimicrobial photodynamic therapy for the treatment of periodontitis and peri-implantitis:An American Academy of Periodontology best evidence review[J]. J Periodontol. 2018; 89(7):783-803. [32] Halstead F D, Thwaite J E, Burt R,et al.Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms[J]. Appl Environ Microbiol. 2016; 82(13):4006-4016. [33] Song H H, Lee J K, Um H S, et al.Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens[J]. J Periodontal Implant Sci. 2013; 43(2):72-78. [34] Galo I D C, Prado R P, Santos W G D. Blue and red light photoemitters as approach to inhibit Staphylococcus aureus and Pseudomonas aeruginosa growth[J]. Braz J Biol. 2021; 82:e231742. [35] Galo I D C, Lima B E, Santos T G, et al. Staphylococcus aureus growth delay after exposure to low fluencies of blue light (470 nm)[J]. Braz J Biol. 2021; 81(2):370-376. [36] Wang D, Pan H, Yan Y, et al.Rose bengal-mediated photodynamic inactivation against periodontopathogens in vitro[J]. Photodiagnosis Photodyn Ther. 2021; 34:102250. [37] Lee H, Kim Y G, Um H S, et al.Efficacy of an LED toothbrush on a Porphyromonas gingivalis biofilm on a sandblasted and acid-etched titanium surface:an in vitro study[J]. J Periodontal Implant Sci. 2018; 48(3):164-173. [38] Rapacka-Zdonczyk A, Wozniak A, Pieranski M, et al.Development of Staphylococcus aureus tolerance to antimicrobial photodynamic inactivation and antimicrobial blue light upon sub-lethal treatment[J]. Sci Rep. 9; 9423(2019). [39] Podporska-Carroll J, Panaitescu E, Quilty B, Wang L, et al. Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes[J]. Applied Catalysis B:Environmental.2015; 176-177, 70-75. [40] Luthfiah A, Permana M D, Deawati Y, et al.Photocatalysis of nanocomposite titania-natural silica as antibacterial against Staphylococcus aureus and Pseudomonas aeruginosa[J]. RSC Adv. 2021; 11(61):38528-38536. [41] Venkei A, Ungvári K, Eördegh G, et al.Photocatalytic enhancement of antibacterial effects of photoreactive nanohybrid films in an in vitro Streptococcus mitis model[J]. Arch Oral Biol. 2020; 117:104837. [42] Leelanarathiwat K, Katsuta Y, Otsuka Y, et al.The Antibacterial Activity of Hydroxyapatite-Tryptophan Complex with Gray Titania by Photocatalysis Using LED Diodes[J]. Int J Oral Maxillofac Implants. 2020; 35(2):265-274. [43] Li J, Song S, Meng J, et al.2D MOF Periodontitis Photodynamic Ion Therapy[J]. J Am Chem Soc. 2021; 143(37):15427-15439. [44] Xu H, Zhang J, Lv X, et al.The effective photocatalysis and antibacterial properties of AgBr/Ag2MoO4@ZnO composites under visible light irradiation. Biofouling. 2019; 35(7):719-731. |