Chinese Journal of Stomatological Continuing Education ›› 2023, Vol. 26 ›› Issue (4): 233-239.DOI: 10.12337/zgkqjxjyzz.2023.04.001
Jinfeng Peng1,2,3, Qingming Tang1,2,3, Lili Chen1,2,3,*
Online:
2023-07-31
Published:
2023-11-29
Contact:
Lili Chen. Tel: 027-85726949. Email: Supported by:
Jinfeng Peng, Qingming Tang, Lili Chen. Effects of Photobiomodulation on Craniomaxillofacial Bone Repair[J]. Chinese Journal of Stomatological Continuing Education, 2023, 26(4): 233-239.
Add to citation manager EndNote|Ris|BibTeX
URL: https://jxjyzz.cndent.com/EN/10.12337/zgkqjxjyzz.2023.04.001
[1] Schuett DJ, Hake ME, Mauffrey C, et al.Current Treatment Strategies for Patella Fractures[J]. Orthopedics. 2015; 38(6):377-384. [2] Yong EL, Logan S.Menopausal osteoporosis: screening, prevention and treatment[J]. Singapore Med J. 2021; 62(4):159-166. [3] Iglesias L, Yeh JK, Castro-Magana M, et al.Effects of growth hormone on bone modeling and remodeling in hypophysectomized young female rats: a bone histomorphometric study[J]. J Bone Miner Metab. 2011; 29(2):159-167. [4] Telatar BC, Gungor AY.Effectiveness of vibrational forces on orthodontic treatment: A randomized, controlled clinical trial[J]. J Orofac Orthop. 2021; 82(5):288-294. [5] Miles P, Fisher E, Pandis N.Assessment of the rate of premolar extraction space closure in the maxillary arch with the AcceleDent Aura appliance vs no appliance in adolescents: A single-blind randomized clinical trial[J]. Am J Orthod Dentofacial Orthop. 2018; 153(1):8-14. [6] Almpani K, Kantarci A.Nonsurgical Methods for the Acceleration of the Orthodontic Tooth Movement[J]. Front Oral Biol. 2016; 18:80-91. [7] Anders JJ, Lanzafame RJ, Arany PR.Low-level light/laser therapy versus photobiomodulation therapy[J]. Photomed Laser Surg. 2015; 33(4):183-184. [8] Adelman MR, Tsai LJ, Tangchitnob EP, et al.Laser technology and applications in gynaecology[J]. J Obstet Gynaecol. 2013; 33(3):225-231. [9] Chen Z, Huang S, Liu M.The review of the light parameters and mechanisms of Photobiomodulation on melanoma cells[J]. Photodermatol Photoimmunol Photomed. 2022; 38(1):3-11. [10] Mester A, Mester A.The History of Photobiomodulation: Endre Mester (1903-1984)[J]. Photomed Laser Surg. 2017; 35(8):393-394. [11] Schultz RJ, Krishnamurthy S, Thelmo W, et al.Effects of varying intensities of laser energy on articular cartilage: a preliminary study[J]. Lasers Surg Med. 1985; 5(6):577-588. [12] Trelles MA, Mayayo E.Bone fracture consolidates faster with low-power laser[J]. Lasers Surg Med. 1987; 7(1):36-45. [13] Guzzardella GA, Fini M, Torricelli P, et al.Laser stimulation on bone defect healing: an in vitro study[J]. Lasers Med Sci. 2002; 17(3):216-220. [14] Lin JT.Progress of medical lasers: Fundamentals and Applications[J]. Med Devices Diagn Eng, 2016; 2(1):36-41. [15] Bölükbaşı Ateş G, Ak A, Garipcan B, et al.Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells[J]. Cytotechnology. 2020; 72(2):247-258. [16] Peng J, Zhao J, Tang Q, et al.Low intensity near-infrared light promotes bone regeneration via circadian clock protein cryptochrome 1[J]. Int J Oral Sci. 2022; 14(1):53. [17] Finlayson L, Barnard IRM, McMillan L, et al. Depth Penetration of Light into Skin as a Function of Wavelength from 200 to 1000 nm[J]. Photochem Photobiol. 2022; 98(4):974-981. [18] Zein R, Selting W, Hamblin MR.Review of light parameters and photobiomodulation efficacy: dive into complexity[J]. J Biomed Opt. 2018; 23(12):1-17. [19] Lima AMCT, da Silva Sergio LP, de Souza da Fonseca A. Photobiomodulation via multiple-wavelength radiations[J]. Lasers Med Sci. 2020; 35(2):307-316. [20] Obodovskiy I.6-Radiation and Chemical Hormesis[M]. Fundamentals of radiation and chemical safety. Amsterdam: Elsevier, 2015:181-213. [21] Calabrese EJ.The emergence of the dose-response concept in biology and medicine[J]. Int J Mol Sci. 2016; 17(12):2034. [22] Flores Luna GL, de Andrade ALM, Brassolatti P, et al. Biphasic Dose/Response of photobiomodulation therapy on culture of human fibroblasts[J]. Photobiomodul Photomed Laser Surg. 2020; 38(7):413-418. [23] Bouvet-Gerbettaz S, Merigo E, Rocca JP, et al.Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts[J]. Lasers Surg Med. 2009; 41(4):291-297. [24] Deana AM, de Souza AM, Teixeira VP, et al. The impact of photobiomodulation on osteoblast-like cell: a review[J]. Lasers Med Sci. 2018; 33(5):1147-1158. [25] Coskun ME, Coskun KA, Tutar Y.Determination of Optimum Operation Parameters for Low-Intensity Pulsed Ultrasound and Low-Level Laser Based Treatment to Induce Proliferation of Osteoblast and Fibroblast Cells[J]. Photomed Laser Surg. 2018; 36(5):246-252. [26] Borzabadi-Farahani A.Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review[J]. J Photochem Photobiol B. 2016; 162:577-582. [27] Zecha JA, Raber-Durlacher JE, Nair RG, et al.Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations[J]. Support Care Cancer. 2016; 24(6):2781-2792. [28] Wu X, Moges H, Detaboada L, et al.Comparison of the effects of pulsed and continuous wave light on axonal regeneration in a rat model of spinal cord injury[J]. Lasers Med Sci. 2012; 27(2):525-528. [29] Barbora A, Bohar O, Sivan AA, et al.Higher pulse frequency of near-infrared laser irradiation increases penetration depth for novel biomedical applications[J]. PLoS One. 2021; 16(1):e0245350. [30] Joensen J, Ovsthus K, Reed RK, et al.Skin penetration time-profiles for continuous 810 nm and Superpulsed 904 nm lasers in a rat model[J]. Photomed Laser Surg. 2012; 30(12):688-694. [31] Hashmi JT, Huang YY, Sharma SK, et al.Effect of pulsing in low-level light therapy[J]. Lasers Surg Med. 2010; 42(6):450-466. [32] Hanna R, Agas D, Benedicenti S, et al.A Comparative Study Between the Effectiveness of 980 nm Photobiomodulation Delivered by Hand-Piece With Gaussian vs. Flat-Top Profiles on Osteoblasts Maturation[J]. Front Endocrinol (Lausanne). 2019; 10:92. [33] Agas D, Hanna R, Benedicenti S, et al.Photobiomodulation by Near-Infrared 980-nm Wavelengths Regulates Pre-Osteoblast Proliferation and Viability through the PI3K/Akt/Bcl-2 Pathway[J]. Int J Mol Sci. 2021; 22(14):7586. [34] Moncada S, Erusalimsky JD.Does nitric oxide modulate mitochondrial energy generation and apoptosis?[J]. Nat Rev Mol Cell Biol. 2002; 3(3):214-220. [35] Brookes PS, Levonen AL, Shiva S, et al.Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species[J]. Free Radic Biol Med. 2002; 33(6):755-764. [36] Karu T.Primary and secondary mechanisms of action of visible to near-IR radiation on cells[J]. J Photochem Photobiol B. 1999; 49(1):1-17. [37] Avci P, Nyame TT, Gupta GK, et al.Low-level laser therapy for fat layer reduction: a comprehensive review[J]. Lasers Surg Med. 2013; 45(6):349-357. [38] Mikami R, Mizutani K, Aoki A, et al.Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1[J]. Lasers Surg Med. 2018; 50(4):340-352. [39] Serrage H, Heiskanen V, Palin WM, et al.Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light[J]. Photochem Photobiol Sci. 2019; 18(8):1877-1909. [40] Wang Y, Huang YY, Wang Y, et al.Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels[J]. Sci Rep. 2016; 6:33719. [41] Wang Y, Huang YY, Wang Y, et al.Red (660nm) or near-infrared (810nm) photobiomodulation stimulates, while blue (415nm), green(540nm) light inhibits proliferation in human adipose-derived stem cells[J]. Sci Rep. 2017; 7(1):7781. [42] Notomi T, Kuno M, Hiyama A, et al.Membrane depolarization regulates intracellular RANKL transport in non-excitable osteoblasts[J]. Bone. 2015; 81:306-314. [43] Kim HJ, Son ED, Jung JY, et al.Violet light down-regulates the expression of specific differentiation markers through Rhodopsin in normal human epidermal keratinocytes[J]. PLoS One. 2013; 8(9):e73678. [44] Cronin MA, Lieu MH, Tsunoda S.Two stages of light-dependent TRPL-channel translocation in Drosophila photoreceptors[J]. J Cell Sci. 2006; 119(Pt 14):2935-2944. [45] Sies H, Jones DP.Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol. 2020; 21(7):363-383. [46] Boyce BF, Xing L.Functions of RANKL/RANK/OPG in bone modeling and remodeling[J]. Arch Biochem Biophys. 2008; 473(2):139-146. [47] Cifter M, Celikel ADG, Cifter ED, et al.Comparison of the efficiency of alveolar decortication and low level laser therapy on orthodontic tooth movement and alveolar metabolism in rats[J]. J Dent Sci. 2019; 14(4):401-407. [48] Dandajena TC, Ihnat MA, Disch B, et al.Hypoxia triggers a HIF-mediated differentiation of peripheral blood mononuclear cells into osteoclasts[J]. Orthod Craniofac Res. 2012; 15(1):1-9. [49] Bai J, Li L, Kou N, et al.Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis[J]. Stem Cell Res Ther. 2021; 12(1):432. [50] Chen W, Wu P, Yu F, et al.HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases[J]. Cells. 2022; 11(22):3552. [51] Lee G, Kim B, Ko Y, et al.Regulation of RANKL-Induced Osteoclastogenesis by 635-nm Light-Emitting Diode Irradiation Via HSP27 in Bone Marrow-Derived Macrophages[J]. Photomed Laser Surg. 2017; 35(2):78-86. [52] Jettar V, Napimoga MH, Freitas F, et al.Effects of Photobiomodulation on SOFAT, A T-cell-derived Cytokine, May Explain Accelerated Orthodontic Tooth Movement[J]. Photochem Photobiol. 2018; 94(3):604-610. [53] Kular J, Tickner J, Chim SM, et al.An overview of the regulation of bone remodelling at the cellular level[J]. Clin Biochem. 2012; 45(12):863-873. [54] Bellido T.Osteocyte-driven bone remodeling[J]. Calcif Tissue Int. 2014; 94(1):25-34. [55] Wan Z, Zhang P, Lv L, et al.NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review[J]. Theranostics. 2020; 10(25):11837-11861. [56] Yang J, Fu Q, Jiang H, et al.Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy[J]. Front Oncol. 2022; 12:1022973. [57] Matos DS, Palma-Dibb RG, de Oliveira Santos C, et al. Evaluation of photobiomodulation therapy to accelerate bone formation in the mid palatal suture after rapid palatal expansion: a randomized clinical trial[J]. Lasers Med Sci. 2021; 36(5):1039-1046. [58] Pereira DA, Mendes PGJ, de Souza Santos S, et al. Effect of the association of infra-red and red wavelength photobiomodulation therapy on the healing of post-extraction sockets of third lower molars: a split-mouth randomized clinical trial[J]. Lasers Med Sci. 2022; 37(5):2479-2487. [59] Cepera F, Torres FC, Scanavini MA, et al.Effect of a low-level laser on bone regeneration after rapid maxillary expansion[J]. Am J Orthod Dentofacial Orthop. 2012; 141(4):444-450. [60] Ferreira FN, Gondim JO, Neto JJ, et al.Effects of low-level laser therapy on bone regeneration of the midpalatal suture after rapid maxillary expansion[J]. Lasers Med Sci. 2016; 31(5):907-913. [61] Impellizzeri A, Horodynski M, Fusco R, et al.Photobiomodulation Therapy on Orthodontic Movement: Analysis of Preliminary Studies with a New Protocol[J]. Int J Environ Res Public Health. 2020; 17(10):3547. [62] Monea A, Beresescu G, Boeriu S, et al.Bone healing after low-level laser application in extraction sockets grafted with allograft material and covered with a resorbable collagen dressing: a pilot histological evaluation[J]. BMC Oral Health. 2015; 15:134. [63] Rosero KAV, Sampaio RMF, Deboni MCZ, et al.Photobiomodulation as an adjunctive therapy for alveolar socket preservation: a preliminary study in humans[J]. Lasers Med Sci. 2020; 35(8):1711-1720. [64] Saucedo CL, Courtois EC, Wade ZS, et al.Transcranial laser stimulation: Mitochondrial and cerebrovascular effects in younger and older healthy adults[J]. Brain Stimul. 2021; 14(2):440-449. [65] Behrangi E, Roohaninasab M, Sadeghzadeh-Bazargan A, et al.A systematic review on the treatment of pediatric severe alopecia areata by topical immunotherapy or Anthralin (contact sensitization) or low-level light/laser therapy (LLLT): focus on efficacy, safety, treatment duration, recurrence, and follow-up based on clinical studies[J]. J Cosmet Dermatol. 2022; 21(7):2727-2741. [66] Magri AMP, Parisi JR, de Andrade ALM, et al. Bone substitutes and photobiomodulation in bone regeneration: A systematic review in animal experimental studies[J]. J Biomed Mater Res A. 2021; 109(9):1765-1775. [67] Sampurna MTA, Etika R, Utomo MT, et al.An evaluation of phototherapy device performance in a tertiary health facility[J]. Heliyon. 2020; 6(9):e04950. [68] Phan DT, Bui NT, Vo TH, et al.Development of a LED light therapy device with power density control using a Fuzzy logic controller[J]. Med Eng Phys. 2020; 86:71-77. [69] Yoon JS, Ku WY, Lee JH, et al.Low-level light therapy using a helmet-type device for the treatment of androgenetic alopecia: A 16-week, multicenter, randomized, double-blind, sham device-controlled trial[J]. Medicine (Baltimore). 2020; 99(29):e21181. [70] Montealegre A, Charpak N, Parra A, et al.Effectiveness and safety of two phototherapy devices for the humanised management of neonatal jaundice[J]. An Pediatr (Engl Ed). 2020; 92(2):79-87. [71] Sorbellini E, Rucco M, Rinaldi F.Photodynamic and photobiological effects of light-emitting diode (LED) therapy in dermatological disease: an update[J]. Lasers Med Sci. 2018; 33(7):1431-1439. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||